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An algorithm has been developed which optimally decodes a block code for minimum
probability of symbol error in an iterative manner. The initial estimate is made by looking
at each bit independently and is improved by considering bits related to it through the
parity check equations. The dependent bits are considered in order of increasing probabil-
ity of error. Since the computation proceeds in a systematic way with the bits having the
greatest -effect being used first, the algorithm approaches the optimum estimate after only
a fraction of the parity check equations have been used. This decoding algorithm will be
tested via simulations of the (128, 64, 22) BCH code over the deep space channel.

l. Introduction

The measure of performance most commonly used in com-
paring error-correcting codes for transmitting binary informa-
tion over noisy channels is the information bit probability of
error. When block codes are used, an alternative measure is the
code word probability of error. An optimum decoding algo-
rithm which minimizes the probability of error for one mea-
sure is not optimum for the other; however, they are very
close and become asymptotically equal at very high signal-to-
noise ratios.

The optimum algorithm, under éither measure, requires an
amount of ‘computation proportional to the number of pos-
sible code words that can be transmitted, thus limiting the size
of the code for which such algorithms can be used. This
problem can be bypassed at high signal-to-noise ratios where
one can use nonoptimum decoders having simple decoding
algorithms and make up the loss by using larger codes with

greater minimum distance. At low signal-to-noise, however,
there is an absolute limit to the minimum probability of error,
depending only upon the decoding algorithm but not upon the
code used. In this region, if algebraic decoding is used, the
minimum probability of error is greater than what is currently
realizable using convolutional coding with an optimum decod-
ing algorithm. The bound for optimum decoding, however, is
considerably lower, and worthwhile improvement in perfor-
mance can be achieved if this limit can be approached. For this
reason, approximations to optimum algorithms are being
sought whose complexities are very much less but whose
performances are close to optimum.

The approximations that can be made are of two types.
First, some of the information available at the receiver can be
ignored. An example is to decode each bit of the received code
word independently, disregarding the dependence between the
bits of each code word. This approach is called hard decision
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decoding and is equivalent to approximating the channel by a
binary symmetric one. Second, an incomplete algorithm can
be used. Optimum decoding of block codes is equivalent to
calculating the distance, according to some metric, between
the received vector and all possible code words and selecting as
the best estimate of the transmitted code word that one which
is “closest” to it. Examples of incomplete algorithms for block
codes are those which search for code words only within a
certain distance of the received vector or select, in some other
way, a subset of all possible code words among which the best
estimate of the full decoding algorithm has a high probability
of being found (Refs. 1-3).

il. An iterative Algorithrn

Rather than selecting a set of candidate code words accord-
ing to some scheme as those mentioned above, an alternate
approach is to disregard some of the channel information and
make an optimum decision on what remains. This method
works well at low signal-to-noise ratios where many bits have a
high probability of error and can be disregarded with only a
small penalty in performance. Such an algorithm can be put
into an iterative form. Starting with an independent estimate
of each received bit, the estimate can be irqproved by succes-
sively looking at bits related to it through the parity check
equations of the code. These redundant bits are examined in
order of increasing probability error. Each bit, as it is exam-
ined, improves the estimate of the other bits, the ones with a
higher probability of error having a smaller effect than those
with a lower probability of error. As poorer and poorer bits
are examined, they perturb the previous estimate less and less,
and a point is reached where the algorithm may be stopped
with a high probability of being close to the optimum
estimate.

As each symbol is received, the likelihood ratio

Pr(r, 1C_=0)
Om —Pr(rmlCm =1)

is calculated and mapped into the region (-1, +1) by the
transformation

When the entire code word has been received, the symbols are
sorted according to increasing probability of error (or equiva-
lently, magnitude of P,,) so that the least reliable bits are to
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the right. The columns of the parity check matrix of the code
are then permuted to the same order as the symbols have been.
By using row operations only, the permuted parity check
matrix can be reduced to a form which has a triangle of zeros
in the upper-right-hand comer. The first P rows of this matrix
represent the dependency among the &k + p symbols with the
least probability of error. If the remaining n - (k + p) symbols
are considered erased, then an “optimum” decision, in the
sense of minimum probability of symbol error, can be made
using only this portion of the matrix. This form of the matrix
also leads to an iterative algorithm. Starting with p =0 and
increasing p by one each iteration, successively poorer received
bits are considered in estimating the transmitted symbols, until
for p =n - k the “true” optimum estimate is reached.

The decoding rule, for minimum probability of symbol
error, using the method of decoding in the dual space of the
code, is (see appendix)
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o
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C]', is the Ith bit of the jth code word in the dual code, that
is, one formed by a linear combination of the rows of the
parity check matrix; 6,,,=1 if m=1[ and 0 if m #1. Thus
when estimating the mth bit, the term P, is included in the
product if the Ith bit of Ci'= 1 and m#1, or the Ith bit of
C]-'= Oand m=1L

As an initial estimate of the transmitted symbols (p = 0),
let &, =1if P,,>0and C,=0 if P, <O. The first itera-
tion uses only a single parity check equation so that there
are only two words in the dual code, the all-zero code word
and the one equal to the first row of the parity check
matrix. The all-zero vector contributes to A, the term P, ,
which is the initial estimate, and the single parity check
equation contributes a single product term of the P,’s.

The algorithm is then iterated, each time adding another
parity check equation and taking into consideration the
“best” of the remaining received bits. At each iteration the
number of terms in the sum is doubled. Because of the
reduced form of the parity check matrix, with zeros in the
upper-right-hand corner, the terms A, , from previous itera-
tions are not changed when a new row of the matrix is
added and the new terms can be added directly to the previ-
ous stages’ estimate. At each iteration the estimate of each
bit is improved and the bit probability of error decreases.



A detailed example of this algorithm will be given for the
(23,11) Golay code. The block length of this code is long
enough to see the convergence of the algorithm to the
optimum solution as the number of iterations increases and
yet short enough so that a complete decoding can be done
in a reasonable time. In order to estimate the performance
of the algorithm at a given SNR, a large number of received
vectors was generated and fully decoded. Only the 12 most
reliable bits are estimated by the algorithm; the remainder
are calculated through the parity check matrix. This forces
the estimate of the transmitted vector to be a code word.
The estimates of these bits were stored after each iteration,
and the code word was considered to be correctly decoded
when the 12 bits indicated as most reliable were estimated
correctly.

Since the code is linear, the code space looks the same
when viewed from any code word. Therefore, in an example,
it can be assumed without loss of generality that the all-zero
code word is transmitted. The received word can be repre-
sented by a vector of dimension 23, y= (3,¥,,...,¥,3)
Each element of the vector is of the form y; = 1 +n;, where

n; is a sample of a zero mean gaussian process of variance
1/28, where

As a numerical example, consider a received code word
which contains four hard errors and therefore cannot be
decoded correctly using algebraic decoding. In addition, one
of the errors is among the 12 best bits so that the initial
estimate of this algorithm would also be in error. A received
vector (SNR=1.0dB) and the corresponding likelihood
ratios are tabulated below

m 1 2 3 4 5 6 7 8 9 10

4 99 125 .44 -63 .52 .25 01 97 .36 -.90
A, 074 041 26 3.04 22 41 .70 .080 .32 5.62
P .86 92 .59 -50 64 42 17 86 .52 -.70

m 11 12 13 14 15 16 17 18 19

A4, 113 41 .11 06 1.12 .33 -.74 -24 94
A, 054 .28 56 .62 .054 .33 3.90 1.24 083
P 90 .56 .28 24 90 .50 -.59 -.11 .85

m 20 21 22 23

4, 1.8 .71 2.87 1.73
A, 010 .14 001 .013
P 98 75 .99 97

m = bit number.

A, = amplitude of mth bit.

A, = likelihood ratio of mth bit.

P _ = transformed likelihood ratio of mth bit.

m

The first step of the algorithm is to sort the bits accord-
ing to the absolute values of the transformed likelihood
ratios P,,. The sorted order is

Sorted bit order 1 2 3 4 S 6 7 g8 9

Original bit order 22
Sorted Pm 99

20 23 2 11 15 8 1 19
98 97 92 90 90 .86 .86 .85

Sorted bit order 10 11 12 13 14 15 16 17

Original bitorder 21 10 S 17 3 12 9 16
Sorted P 75 =770 .64 -.59 .59 .56 .52 .50

Sorted bit order 18 19 20 21 22 23

Original bit order 4 o6 13 14 7 18
Sorted P -.50 42 28 24 .17 -.11

The original parity check matrix for this. code is

10100100111110000000000
01010010011111000000000
00101001001111100000000
00010100100111110000000
00001010010011111000000
00000101001001111100000
00000010100100111110000
00000001010010011111000
00000000101001001111100
00000000010100100111110
LOOOOOOOOOOIOIOOIOOII111_
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The columns are permuted to the same order as the received
symbols to yield

r_00001010001001110011000.1
00011000001000101001110
00001101000101100001100
00000100000000111111100
00000100001110000101110
00001101000010000110101
00000100100010110100011
01000001101010000101001
01001000110010010000101
11000100111000100000001
_11101000110000000101000

Reducing this matrix by row operations to form a triangle
of zeros in the upper-right-hand corner yields

00111010110110000000000 |
11110000011101000000000
01101101100010100000000
11001001010001 110000000
10000101100100111000000
11001101001100000100000
010001011100000101 10000
10000101010010100101000
10001100001010110000100
11000000011010010100010
110001001 1100010000001

; (G
The estimator A’(;) = ZIII P, it ml (j=
j
ber) will be used with this matrix and the sorted P,,’s. For
the ith iteration the code words C]-' are formed by all linear
combinations of the first i rows of the matrix.

iteration num-

The initial estimate can be thought of as using the esti-
mator with a dual code consisting of the all-zero vector
alone. The index j, which indicates the jth code word in the
dual code, has only the value 1, and C; is zero for all values
of /. In this case Af'?) = HPB’"’ since 8 ;=0 for m#1 and
1 for m=1, A(O)—P When the only code word in the
dual code is the all-zero one, the code itself contains all
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possible binary n-tuples. All the bits are independent, and
the best estimate of any bit depends only upon the likeh-
hood ratio of that bit itself.

The first iteration begins to use the dependence between
the bits as expressed by the first parity check equation (the

first row) of the H matrix

h, = 00111 01011 01100 00000 000

There are only two code words in the dual code, the all-zero

code word and hl,so that
PPPPPP PP
1) - 374"5 7797 107 127 13
A‘m Pm+ P
m

for m =3,4,5,7,9,10,12,13

'P +P P3P4P5P7P9P10P12P13

otherwise.

Note that each term corresponds to a code word in the
dual. code. Each term contains the product of the trans-
formed likelihood ratios of all the bits in the code word
which are equal to one multiplied or divided by the ratio of

the mth bit.

The second iteration uses two parity check equations h,
and h,,.

h, = 11110 00001 11010 00000 000

The four code words in the dual code are

Cl' = 0h, + Ok, = 00000 00000 00000 00000 000
C2' =0h, + 1h, = 00111 01011 01100 00000 000
C3' =1h, + Ok = 11110 00001 11010 00000 000
C‘; =1h, + 1h =11001 01010 10110 00000 000

At this step the purpose of permuting the columns of the
H matrix and reducing it to one with all zeros in a triangle
in the upper-right-hand corner becomes clear. First, the code
words in the dual code at the Ith iteration contain all the
code words of the /- 1th iteration so that Afrll) = Afrll_l) +
271 new products. These new products are formed from the
code words generated by adding modulo 2, the new parity



check equation 4, to all the code words of the previous
iteration. Second, all the new products include the trans-
formed likelihood ratio of the (k + )th bit but not of bits
less reliable than this. Thus the Ith iteration uses the previ-
ous estimate and the parity check equation containing the
best bit not yet used to obtain an improved estimate.

At each iteration the estimate as to which bits are best
may change. This is seen in Fig 1, where the A'(’I,)’s are
plotted as a function of iteration number. As more parity
check equations are used, the absolute value of A (which is a
measure of goodness) of the bits whose initial estimate was
wrong decreases relatively rapidly. At the seventh iteration
the best 13 bits are correct and the code word would be
decoded correctly if the algorithm would be stopped at this
point. At the final iteration, using the full decoding algo-
rithm (equivalent to maximum likelihood), the best 17 bits
are correct. Of the four bits whose initial estimate was
wrong, only the one with the poorest initial estimate was
corrected. In cases where there are few errors or the likeli-
hood ratios of the correct bits are initially higher, the wrong

bits are also corrected, but this is not necessary for correct
decoding using this algorithm.

The performance of this code as a function of number of
iterations is shown in Fig. 2. The zero iteration curve illus-
trates the performance possible by assuming there are no
errors in the best 12 bits, while the 11th iteration curve
represents the performance using the full decoding algorithm.
Note that at the sixth iteration using 2% = 64 terms in the
sum of the estimator, the performance is almost equivalent
to the full decoding algorithm which requires 2'' = 2048
terms in the sum.

Hl. Conclusion

This algorithm is unique among those which approximate
maximum likelihood decoders since it is not based upon
generating a set of candidate code words. Its performance, in
terms of probability of error for a given amount of computa-
tion, is comparable to these techniques and may be the basis
of more efficient algorithms to be developed in the future.
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Appendix

Minimum Probability of Symbol Error Decoding in the Dual Space
of the Code (Ref. 4)

The decision rule which minimizes the error probability
of the ith symbol is

HO

PAC.=0ly) 2 Pr(C. = 1ly)
] < 1

,

where the hypotheses are

H . The ith symbol of the transmitted code word =0
H,: The ith symbol of the transmitted code word ¢ =1

In terms of the set of possible transmitted code words
C,€C

HO
>
> oEc ly 2 Y Pc,
C _ec H ¢ _ec
m 1 m
C_ =0 c_ =1
mi mi

If the code words are equally likely, using Bayes rule yields

Ho
2 PGlc) Z Y Pylc,)
C_€c H C ec
m 1 m
Cc_.=0 c_ =1
mi mi

Both sides of the inequality can be combined so that the
sum is over the entire set of code words

0
2 AlylC, D™ 2 0

C ec¢
m

DAV

—

This decision rule requires calculating the probability of a
given received vector for all words in the code. The estimate
of the ith bit is found by summing separately all the prob-
abilities for which the ith bit is equal to 1 and those for
which the bit equals 0. The estimate is that value for which
the sum is greater. The amount of computation required is
proportional to 2%, the number of words in the code. This
decision rule can be transformed to a sum over the code
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words in the dual codes where the number of calculations
required is proportional to 27~%, This in itself is not of
much help when 277 is also very large; however, this form
of the decision rule can be converted to an approximate
decoding algorithm where the sum is over only a small num-
ber of code words in the dual code. Such a decoding algo-
rithm is useful if, for a large reduction in the amount of
computation, only a small increase in the bit probability of
error results, which indeed is the case.

To convert the decision rule to a sum over the dual code,
the finite Fourier transform is used. Defining the input
points as the elements of V), where Vy, is the vector space
of the 2V possible binary vectors of dimension N, the
Fourier transform of the function f(u) defined on these
points is

F)= D fEEDHY

VEVN

Summing F(u) over all u € C

SFEW= 2 D FWEIEY

=le, HEC VEV

Interchanging the order of summation

DFW=2 f3 Y Y

BeEC veE VN uec

Representing the code by a set of basis vectors b,, which
may be the rows of the generator matrix,

p=abd +ab +--- tab, (where ¢ € {0, 1})

All possible code words are generated as the a; take on the
2% possible values so that

Z F(u)= Z f(v) Z (@b +a b +...... +akbk)-v

ueC vEVN al,az.., a,



0

a . b.-v ! a b v
. E(—u“ ..... (Z 1 k*

Any term, and therefore the entire expression equals zero if
vb; # 0. The only nonzero case is when v * b, = 0 for all
that is for those v which are in the null space of the code C.
These vectors are the elements of the dual code C'and the
sum over u for these vectors is | Cl = the number of vectors
in C. The sum over C therefore reduces to

2. Fw=Iicl 25 f®

neC vec'

For convenience the names of the code and its dual may be
interchanged so that

YW= X Fw
uec '

vel

This expression can now be used to simplify the decision
rule. Letting

Vv,
f=Pr(ylv)(-1)*
the decision rule can be written as

HO
dSrwmz o
Hl

vel

or

H

0
2 Fw 2 0
uEC’ Hl

F(u) may be calculated from the definition of the Fourier
transform

2 Y PIVED DY

ueC VEVN

0

TAV T

-

The inner sum is over all possible vectors in the space V. In
the general case this requires a summation over 2&¥ terms.
However, if the channel is memoryless, this can be reduced to
only 2N terms. In this case,

N
Pr(ylv) =rI Pr(yl.l v],)

j=1

So that the decision rule becomes

[=]

N 1

M.V, v.8
IT X 2oy e i
ueC' j=1 v/.=0

0

AV T

—_

V.
Note that the term (-1) ' is ingluded only in the product for
i =j by representing it as (-1)"7"¥. Expanding the inner sum

0

N HA+S .
3 T1[7ro= 0 2= 067 0] 20

'

peC j=1

AV =

—_

This expression can be written in terms of the likelihood ratio

] =Pr(y].h/].=0)

j Pr(y],lv]. =1)
by dividing by

N
nPr(ij]. = 0)
j=1

The decision rule is then

TAV T
o

—

% 1[teocn]

pec' j=1
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N
Simplifying even further by dividing byn 1+ ¢].)
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or in its simplest form

j=1

x

u.b ., . @6,
N 1+¢.(_1)]U 0 N 1—¢. 7 Yy
] J
,n(——lw. )2 = M(
nel j=1 ]

AV

1 HEC j=1 7
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Fig. 1. Improvement of bit estimates as a function of
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Fig. 2. Performance of the algorithm for the Golay (23.12) code
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